Quantitative phase-field modeling of nonisothermal solidification in dilute multicomponent alloys with arbitrary diffusivities.
نویسنده
چکیده
A quantitative phase-field model is developed for simulating microstructural pattern formation in nonisothermal solidification in dilute multicomponent alloys with arbitrary thermal and solutal diffusivities. By performing the matched asymptotic analysis, it is shown that the present model with antitrapping current terms reproduces the free-boundary problem of interest in the thin-interface limit. Convergence of the simulation outcome with decreasing the interface thickness is demonstrated for nonisothermal free dendritic growth in binary alloys and isothermal and nonisothermal free dendritic growth in a ternary alloy.
منابع مشابه
Quantitative phase-field modeling of solidification at high Lewis number.
A phase-field model of nonisothermal solidification in dilute binary alloys is used to study the variation of growth velocity, dendrite tip radius, and radius selection parameter as a function of Lewis number at fixed undercooling. By the application of advanced numerical techniques, we have been able to extend the analysis to Lewis numbers of order 10 000, which are realistic for metals. A lar...
متن کاملPhase-field modeling of binary alloy solidification with coupled heat and solute diffusion.
A phase-field model is developed for simulating quantitatively microstructural pattern formation in solidification of dilute binary alloys with coupled heat and solute diffusion. The model reduces to the sharp-interface equations in a computationally tractable thin-interface limit where (i). the width of the diffuse interface is about one order of magnitude smaller than the radius of curvature ...
متن کاملQuantitative phase-field modeling for dilute alloy solidification involving diffusion in the solid.
An antitrapping current scheme for quantitative phase-field model [A. Karma, Phys. Rev. Lett. 87, 115701 (2001)] is extended to solidification process in a dilute binary alloy system involving diffusion in the solid. It is demonstrated in an asymptotic analysis that in the case of an arbitrary value of the solid diffusivity, five types of constraints exist between interpolating functions used i...
متن کاملOnsager approach to the one-dimensional solidification problem and its relation to the phase-field description.
We give a general phenomenological description of the steady-state 1D front propagation problem in two cases: the solidification of a pure material and the isothermal solidification of two-component dilute alloys. The solidification of a pure material is controlled by the heat transport in the bulk and the interface kinetics. The isothermal solidification of two-component alloys is controlled b...
متن کاملAn adaptive, fully implicit multigrid phase-field model for the quantitative simulation of non-isothermal binary alloy solidification
Using state-of-the-art numerical techniques, such as mesh adaptivity, implicit time-stepping and a non-linear multi-grid solver, the phase-field equations for the non-isothermal solidification of a dilute binary alloy have been solved. Using the quantitative, thin-interface formulation of the problem we have found that at high Lewis number a minimum in the dendrite tip radius is predicted with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 86 5 Pt 1 شماره
صفحات -
تاریخ انتشار 2012